Все про разъем pci e x16: что это за слот и каких версий он бывает?
Содержание:
- Помните: размер порта PCI-E и и количество полос могут не совпадать
- Что такое PCI Express и что он обозначает?
- Ссылки[]
- Пропускная способность[]
- Что такое шина PCI Express?
- Жизнь на быстрых полосах
- Обратная совместимость версий PCI-Express 1.0, 2.0 и 3.0
- Описание протокола[]
- В чем разница между PCI Express 3.0 и 4.0
- Как PCI Express 4.0 влияет на скорость вашей видеокарты?
- Что заменит PCIe?
- Каковы различные форматы PCI Express?
- Распиновка разъема PCI
Помните: размер порта PCI-E и и количество полос могут не совпадать
Вот одна из наиболее запутанных частей настройки PCI-E: порт может быть размером с карту x16, но иметь достаточно линий данных только для чего-то гораздо менее быстрого, например x4. Это связано с тем, что хотя PCI-E может поддерживать практически неограниченное количество отдельных подключений, все же существует практический предел пропускной способности чипсета. Более дешёвые материнские платы с более бюджетными чипсетами могут подойти только до одного слота x8, даже если этот слот физически может вместить карту x16. Между тем, материнские платы для «геймеров» будут иметь до четырёх полных слотов PCI-E размера x16 и x16 для максимальной совместимости с графическим процессором.
Эта материнская плата для энтузиастов включает пять полноразмерных слотов PCI-E x16, но только два из них имеют полные 16 линий передачи данных — остальные — x8 и x4.
Очевидно, это может вызвать проблемы. Если на вашей материнской плате есть два слота размером x16, но один из них имеет только x4 полосы, то установка новой модной видеокарты в неправильный слот может снизить её производительность на 75%. Конечно, это теоретический результат: архитектура материнских плат означает, что вы не увидите такого резкого спада. Дело в том, что правильная карта должна быть вставлена в правильный слот.
К счастью, пропускная способность определённых слотов PCI обычно указывается в руководстве к компьютеру или материнской плате с указанием того, какой слот имеет какую ёмкость. Если у вас нет руководства, количество полос обычно указывается на печатной плате материнской платы рядом с портом, например:
Этикетки на этих портах показывают доступные полосы: порт x1 вверху имеет одну полосу, а порт x16 внизу — только четыре, несмотря на его физический размер. PCIEX1_2 означает, что это второй порт x1 на материнской плате.
Кроме того, более короткая карта x1 или x4 может физически поместиться в более длинный слот x8 или x16: первоначальная конфигурация контактов электрических контактов делает её совместимой. Карта может немного болтаться физически, но когда она закреплена в слотах расширения корпуса ПК, она сидит более чем крепко. Естественно, если контакты карты физически больше слота, вставить её нельзя.
Поэтому помните, что при покупке карт расширения или обновлений для слотов PCI Express вы должны учитывать как размер, так и скорость передачи доступных портов.
Связанная статья: PCIe 4.0: что нового и почему это важно
Что такое PCI Express и что он обозначает?
PCI Express означает Peripheral Component Interconnect Express и представляет собой стандартный интерфейс для подключения периферийного оборудования к материнской плате на компьютере. Другими словами, PCI Express или сокращенно PCIe — это интерфейс, который подключает к материнской плате внутренние карты расширения, такие как видеокарты, звуковые карты, адаптеры Ethernet и Wi-Fi . Кроме того, PCI Express также используется для подключения некоторых типов твердотельных накопителей, которые обычно очень быстрые.
Какие типы слотов и размеров PCI Express существуют, и что означают линии PCIe? Для подключения плат расширения к материнской плате PCI Express использует физические слоты. Обычными слотами PCI Express, которые мы видим на материнских платах, являются PCIe x1, PCIe x4, PCIe x8 и PCIe x16. Число, которое следует за буквой «х», говорит нам о физических размерах слота PCI Express, который, в свою очередь, определяется количеством контактов на нем. Чем больше число, тем длиннее слот PCIe и тем больше контактов, которые соединяют плату расширения с гнездом.
Кроме того, число «х» также указывает, сколько полос доступно в этом слоте расширения. Вот как сравниваются часто используемые слоты PCIe:
- PCIe x1: имеет 1 полосу , 18 контактов и длину 25 мм
- PCIe x4: имеет 4 линии , 32 контакта и длину 39 мм
- PCIe x8: имеет 8 линий , 49 контактов и длину 56 мм
- PCIe x16: имеет 16 линий , 82 контакта и длину 89 мм
Линии PCI Express — это пути между набором микросхем материнской платы и слотами PCIe или другими устройствами, являющимися частью материнской платы, такими как разъем процессора, слоты M.2 SSD, сетевые адаптеры, контроллеры SATA или контроллеры USB.
В PCI Express каждая полоса индивидуальна, что означает, что она не может быть разделена между различными устройствами. Например, если ваша видеокарта подключена к слоту PCIe x16, это означает, что она имеет 16 независимых линий, выделенных только для нее. Никакой другой компонент не может использовать эти полосы, кроме графической карты.
Вот идея, которая может упростить вам понимание того, что такое линии PCI Express: просто представьте, что PCI Express — это магистраль, а автомобили, которые едут по ней, — это данные, которые передаются. Чем больше полос движения доступно на шоссе, тем больше автомобилей можно проехать по нему; чем больше у вас PCIe-линий, тем больше данных можно передать.
Карта PCI Express может устанавливаться и работать в любом слоте PCIe, доступном на материнской плате, если этот слот не меньше платы расширения. Например, вы можете установить карту PCIe x1 в слот PCIe x16. Тем не менее, вы не можете сделать обратное. Например, вы можете установить звуковую карту PCIe x1 в слот PCIe x16, но вы не можете установить графическую карту PCIe x16 в слот PCIe x1.
Какие версии PCI Express существуют, и какую скорость передачи данных (пропускную способность) они поддерживают?
Сегодня используются четыре версии PCI Express: PCI Express 1.0, PCI Express 2.0, PCI Express 3.0 и PCI Express 4.0. Каждая версия PCIe поддерживает примерно удвоенную пропускную способность предыдущего PCIe . Вот что предлагает каждый из них:
- PCI Express 1.0: имеет пропускную способность 250 МБ / с на линию
- PCI Express 2.0: имеет пропускную способность 500 МБ / с на линию
- PCI Express 3.0: имеет пропускную способность 984,6 МБ / с на линию
- PCI Express 4.0: имеет пропускную способность 1969 МБ / с на линию
Помните, что слоты PCIe могут предложить не одну, а несколько дорожек? Значения полосы пропускания, которые мы разделили, умножаются на количество линий, доступных в слоте PCIe. Если вы хотите рассчитать, сколько пропускной способности доступно для определенной платы расширения, вам нужно умножить пропускную способность PCIe на линию на количество доступных для нее линий.
Например, графическая карта, которая поддерживает PCI Express 4.0 и подключена к слоту PCIe x16, имеет доступ к общей пропускной способности около 31,51 ГБ / с. Это результат умножения 1969 МБ / с на 16 (пропускная способность PCIe на линию * 16 линий). Впечатляет, правда?
Вот как масштабируются версии PCI Express, если принять во внимание линии PCI Express:
В будущем появятся новые версии PCI Express, такие как PCI Express 5.0 и PCI Express 6.0. Спецификация PCIe 5.0 была доработана летом 2019 года, предлагая пропускную способность до 3938 МБ / с на линию и до 63 ГБ / с в конфигурации x16. Однако, скорее всего, мы не увидим его в ближайшее время на компьютерном оборудовании потребительского уровня.
Ссылки[]
- С. Озеров, А. Карабуто. Новые шины. Часть 1. PCI Express — общая концепция и возможности. // Sec.Ru Шаблон:Ref-ru
- Североамериканский Express: технология новой шины PCI ExpressШаблон:Ref-ru
- Сравнение интерфейсов PCI-E 2.0 и PCI-E 1.0: «А стоит ли овчинка выделки?» // techlabs.by, 26.11.2008
- PCI Express пункт прибытия 2014 год // IXBT.com, 4 сентября 2003
- PCI Special Interest GroupШаблон:Ref-en
- PCI Express Specifications and White PapersШаблон:Ref-en
- PCI Express External Cabling 1.0 SpecificationШаблон:Ref-en
- PCI Express 2.0 Frequently Asked Questions/ Вопросы по стандарту PCI-E 2.0Шаблон:Ref-en
- Creating a Third Generation I/O Interconnect (PDF)Шаблон:Ref-enШаблон:Ref-pdf
- Intel Developer Network for PCI Express ArchitectureШаблон:Ref-en
- PCI Express 3.0. Frequently Asked Questions. PCI-SIG. Retrieved 23 November 2008.Шаблон:Ref-en
- PCIe 16G May Take Until 2017.Шаблон:Ref-en
Пропускная способность[]
Битрейт в PCIe 1.0 составляет 2,5 Гбит/с. Для расчёта пропускной способности шины необходимо учесть дуплексность и избыточность 8b/10b (8 бит в десяти) (для PCI-E 3 и выше — 128/130). Например, дуплексная пропускная способность соединения x1 составляет:
- 2,5 · 2 · 0,8 = 4 Гбит/с где:
- 2,5 — битрейт, Гбит/с;
- 2 — учёт дуплексности (двунаправленности);
- 0,8 — учёт избыточности 8b/10b для 1.0 и 2.0; 0,985 — 128b/130b для 3.0;
Связей | |||||||
---|---|---|---|---|---|---|---|
x1 | x2 | x4 | x8 | x12 | x16 | x32 | |
PCIe 1.0 | 2/4 | 4/8 | 8/16 | 16/32 | 24/48 | 32/64 | 64/128 |
PCIe 2.0 | 4/8 | 8/16 | 16/32 | 32/64 | 48/96 | 64/128 | 128/256 |
PCIe 3.0 | 8/16 | 16/32 | 32/64 | 64/128 | 96/192 | 128/256 | 256/512 |
PCIe 4.0 (предварительно) | 16/32 | 32/64 | 64/128 | 128/256 | 192/384 | 256/512 | 512/1024 |
Шина UMI — представляет собой модифицированный интерфейс PCI-E x4 c вдвое увеличенной пропускной способностью, за счет перехода с первой на вторую версию стандарта. Входит в состав чипсета AMD Fusion A55.
Что такое шина PCI Express?
В далеких 2000-х, когда состоялся переход с устаревающего стандарта PCI (расш. – взаимосвязь периферийных компонентов) на PCI Express, у последнего было одно огромное преимущество: вместо последовательной шины, которой и была PCI, использовалась двухточечная шина доступа. Это означало, что каждый отдельный порт PCI и установленные в него карты, могли в полной мере использовать максимальную пропускную способность не мешая друг другу, как это происходило при подключении к PCI. В те времена количество периферийных устройств, вставляемых в карты расширения, было предостаточно. Сетевые карты, аудио карты, ТВ-тюнеры и так далее – все требовали достаточное количество ресурсов ПК. Но в отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, если рассматривать в общем, является пакетной сетью с топологией типа звезда.
С точки зрения непрофессионала, представьте свой настольный ПК в качестве небольшого магазина с одним, двумя продавцами. Старый стандарт PCI был как гастроном: все ожидали в одной очереди, чтобы их обслужили, испытывая проблемы со скоростью обслуживания с ограничением в лице одного продавца за прилавком. PCI-E больше похож на гипермаркет: каждый покупатель движется за продуктами по своему индивидуальному маршруту, а на кассе сразу несколько кассиров принимают заказ.
Очевидно, что гипермаркет по скорости обслуживания выигрывает в несколько раз у обычного магазина, благодаря тому, что магазин не может себе позволить пропускную способность больше чем один продавец с одной кассой.
Также и с выделенными полосами передачи данных для каждой карты расширения или встроенными компонентами материнской платы.
Жизнь на быстрых полосах
PCI-E с момента своего создания претерпел множество изменений; в настоящее время новые материнские платы обычно используют версию 3 стандарта, более быстрая версия 4 становится все более и более распространённой, и уже выпущена спецификация версии 5. Но все разные версии используют одни и те же физические соединения, и эти соединения могут быть четырёх основных размеров : x1, x4, x8 и x16. (Порты x32 существуют, но встречаются крайне редко и обычно не встречаются на потребительском оборудовании.)
Карты разного размера поддерживают разное максимальное количество линий PCI-Express.
Различные физические размеры позволяют использовать разное количество одновременных подключений контактов данных к материнской плате: чем больше порт, тем больше максимальное количество подключений к карте и порту. Эти соединения в просторечии известны как «дорожки», при этом каждая дорожка PCI-E состоит из двух сигнальных пар, одна для отправки данных, а другая для приёма данных. Различные версии стандарта PCI-E допускают разную скорость на каждой полосе. Но, вообще говоря, чем больше полос на одном порте PCI-E и подключённой к нему карте, тем быстрее могут передаваться данные между периферийным устройством и остальной частью компьютерной системы.
Возвращаясь к нашей метафоре бара: если вы представите каждого посетителя, сидящего за стойкой, как устройство PCI-E, то дорожка x1 будет одним барменом, обслуживающим одного клиента. Но у посетителя, сидящего на отведённом месте «x4», будет четыре бармена, которые будут приносить ему напитки и еду, а на месте «x8» будет восемь барменов только для её напитков, а на сиденье «x16» будет целых шестнадцать барменов только для него. А теперь мы перестанем говорить о барах и барменах, потому что нашим бедным образным пьющим грозит отравление алкоголем.
Обратная совместимость версий PCI-Express 1.0, 2.0 и 3.0
Данный вопрос волнует многих, особенно при выборе видеокарты для текущей системы. Так как довольствуясь системой с материнской платой, которая поддерживает PCI-Express 1.0, возникают сомнения, будет ли корректно работать видеокарта с PCI-Express 2.0 или 3.0? Да, будет, по крайней мере так обещают разработчики, которые обеспечили эту самую совместимость. Единственное то, что видеокарта, не сможет полностью раскрыться во всей красе, но потери производительности, в большинстве случаев, будут незначительны.
С точностью наоборот, можно преспокойно устанавливать видеокарты с интерфейсом PCI-E 1.0, в материнские платы, которые поддерживают PCI-E 3.0 или 2.0, тут вообще ничего не ограничивается, так что будьте спокойны по поводу совместимости. Если, конечно же, с другими факторами все в порядке, к таковым можно отнести недостаточно мощный блок питания и т.д.
В общем, мы довольно подробно поговорили относительно PCI-Express, что позволит вам избавиться от множества неясностей и сомнений по поводу совместимости и понимания различий в версиях PCI-E.
blog comments powered by DISQUS
Описание протокола[]
Файл:Gigabyte GV-NX62TC256D8 Rev 1.0.jpg
Видеокарта для PCI Express x16
Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка, называемое линией (Шаблон:Lang-en — полоса, ряд); это резко отличается от PCI, в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.
Соединение (Шаблон:Lang-en — связь, соединение) между двумя устройствами PCI Express состоит из одной (x1) или нескольких (x2, x4, x8, x12, x16 и x32) двунаправленных последовательных линий. Каждое устройство должно поддерживать соединение, по крайней мере, с одной линией (x1).
На электрическом уровне каждое соединение использует низковольтную дифференциальную передачу сигнала (LVDS), приём и передача информации производится каждым устройством PCI Express по отдельным двум проводникам, таким образом, в простейшем случае устройство подключается к коммутатору PCI Express всего лишь четырьмя проводниками.
Использование подобного подхода имеет следующие преимущества:
- карта PCI Express помещается и корректно работает в любом слоте той же или большей пропускной способности (например, карта x1 будет работать в слотах x4 и x16);
- слот большего физического размера может использовать не все линии (например, к слоту x16 можно подвести проводники передачи информации, соответствующие x1 или x8, и всё это будет нормально функционировать; однако при этом необходимо подключить все проводники питания и заземления, необходимые для слота x16).
В обоих случаях на шине PCI Express будет использоваться максимальное количество линий, доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express. Например, карта x4 физически не поместится в стандартный слот x1, несмотря на то, что она могла бы работать в слоте x1 с использованием только одной линии. На некоторых материнских платах можно встретить нестандартные слоты x1 и x4, у которых отсутствует крайняя перегородка, таким образом, в них можно устанавливать карты большей длины, чем разъем. При этом не обеспечивается питание и заземление выступающей части карты, что может привести к различным проблемам.
PCI Express пересылает всю управляющую информацию, включая прерывания, через те же линии, что используются для передачи данных. Последовательный протокол никогда не может быть заблокирован, таким образом задержки шины PCI Express вполне сравнимы с таковыми для шины PCI (заметим, что шина PCI для передачи сигнала о запросе на прерывание использует отдельные физические линии IRQ#A, IRQ#B, IRQ#C, IRQ#D).
Во всех высокоскоростных последовательных протоколах (например, гигабитный Ethernet), информация о Шаблон:D- должна быть встроена в передаваемый сигнал. На физическом уровне PCI Express использует метод канального кодирования 8b/10b (8 бит в десяти, избыточность — 20 %) для устранения постоянной составляющей в передаваемом сигнале и для встраивания информации о синхронизации в поток данных. В PCI Express 3.0 используется более экономное кодирование 128b/130b с избыточностью 1,5 %.
Некоторые протоколы (например, SONET/SDH) используют метод, который называется скремблинг (англ. scrambling) для встраивания информации о синхронизации в поток данных и для «размывания» спектра передаваемого сигнала. Спецификация PCI Express также предусматривает функцию скремблинга, но скремблинг PCI Express отличается от такового для SONET.
В чем разница между PCI Express 3.0 и 4.0
Основная разница между PCI Express 3.0 и 4.0 заключается в скорости передачи данных. Каждая версия PCI Express получает удвоение пропускной способности и 4-я версия не исключение. При использовании 16 линий через PCI-e 4.0 можно передавать данные со скоростью31,5 ГБайт/с, что в два раза больше, чем при использовании версии 3.0.
Год | Версия | Пропускная способность (на 16 линий) |
2002 | 1.0 | 4,0 Гбайт/с |
2007 | 2.0 | 8,0 Гбайт/с |
2010 | 3.0 | 15,8 Гбайт/с |
2017 | 4.0 | 31,5 Гбайт/с |
Разница в пропускной способности выглядит впечатляюще, но многим устройствам такая большая скорость на данный момент не нужна. Поэтому реальный прирост производительности может быть намного меньше.
Например, в таблице внизу приведены результаты видеокарты Radeon RX 5700 XT при ее подключении с помощью PCI-e 3.0 и PCI-e 4.0. Как видно, более высокая пропускная способность PCI-e 4.0 практически не влияет на производительность видеокарты в играх.
Средний FPS на максимальных настройках в FullHD | ||
PCI-e 3.0 | PCI-e 4.0 | |
Shadow of the Tomb Raider | 104 | 105 |
Gears 5 | 100 | 101 |
Red Dead Redemption 2 | 66 | 66 |
Metro Exodus | 52 | 52 |
Borderlands 3 | 82 | 83 |
The Division 2 | 101 | 101 |
Assassin’s Creed Odyssey | 64 | 64 |
С другой стороны, твердотельные диски (SSD) очень чувствительны к скорости подключения и в этом случае разница между PCI Express 3.0 и PCI Express 4.0 более заметна.
Например, в таблице внизу приведены результаты двух похожих SSD накопителей: FireCuda 510 и FireCuda 520. Первый из которых использует интерфейс PCI-e 3.0, а второй PCI-e 4.0.
FireCuda 510 2 Тбайт | FireCuda 520 2 Тбайт | |
PCI-e 3.0 | PCI-e 4.0 | |
Последовательное чтение | 3450 Мбайт/с | 5000 Мбайт/с |
Последовательная запись | 3200 Мбайт/с | 4400 Мбайт/с |
Как видно, при последовательном чтении прирост производительности почти полуторакратный. В новых SSD, которые будут выпускаться под PCI-e 4.0 эта разница может быть еще существенней.
Как PCI Express 4.0 влияет на скорость вашей видеокарты?
Некоторые задают интересный вопрос: влияет ли более быстрая и новая спецификация PCI Express 4.0 на скорость видеокарты? Быстрый ответ — нет , это не так, и вы не получаете больше кадров в секунду! Вот почему:
Когда вы играете в игру, видеокарта использует выделенную память (GDDR) для хранения текстур, используемых для рендеринга кадров на экране
Помимо тактовой частоты графического процессора, эта графическая память является наиболее важной для того, сколько кадров вы получаете каждую секунду
Графическая карта должна использовать интерфейс PCI Express, который соединяет ее с материнской платой только тогда, когда ей нужно обмениваться данными с процессором или загружать текстуры из системной памяти (ОЗУ компьютера). Это не должно случаться часто, поскольку современные видеокарты имеют много собственной оперативной памяти. И даже если / когда это произойдет, после того, как текстуры были переданы через интерфейс PCI Express из системного ОЗУ и загружены в память видеокарты, они остаются там. Причина в том, что графическая память во много раз быстрее системной памяти.
Ни одна из видеокарт, доступных сегодня, не нуждается в полной полосе пропускания, предлагаемой слотами PCI Express 4.0 x16. Для получения дополнительной информации ознакомьтесь с нашим анализом влияния PCI Express 4.0 по сравнению с PCI Express 3.0 на современные настольные компьютеры: PCI Express 4 по сравнению с PCIe 3: есть ли улучшение производительности?
Что заменит PCIe?
Очки виртуальной реальности VR
Разработчики видеоигр всегда ищут игры, которые становятся все более реалистичными, но могут сделать это только в том случае, если они смогут передавать
больше данных из своих игровых программ в гарнитуру VR или на экран пк, и для этого требуются более быстрые интерфейсы.
Из-за этого PCI Express никак не будет продолжать господствовать над своими лаврами. PCI Express 3.0 удивительно быстрый, но мир стремится сделать невероятно быструю передачу.
PCI Express 5.0, который должен быть завершен к 2019 году, будет использовать пропускную способность 31,504 гигабит в секунду на полосу (3938 мегабайт в секунду), что в два раза
больше, чем предлагается у высокоскоростного разъема версии 4.0. Существует ряд других стандартов интерфейса, отличных от PCIe, на которые смотрит технологическая индустрия, но поскольку
для них потребуются серьезные аппаратные изменения, PCIe, похоже останется лидером в течение некоторого, очень продолжительного времени как самый быстрый из существующих когда-либо.
Каковы различные форматы PCI Express?
Показаны различные контроллеры на материнской плате
Express x1 … Express 3.0 … Express x16. Что означает «х»? Как узнаете, поддерживает ли ваш пк? Если есть карта
PCI Express x1, и есть только разъем Express x16, совместимо ли это работает? Если нет, каковы ваши варианты?
Часто не совсем понятно, когда вы покупаете карту расширения для своего компьютера, такую как новая видеокарта, какая из различных технологий PCIe работает
с вашим пк лучше, чем другая.
Однако, насколько это сложно, все выглядит довольно просто, как только вы поймете две важные части информации о высокоскоростном порте: часть, описывающую физический размер,
и часть, описывающую технологическую версию, как описано ниже.
Распиновка разъема PCI
Pin | Имя | Описание | Pin | Имя | Описание |
---|---|---|---|---|---|
A1 | TRST | Test Logic Reset | B1 | -12V | -12 VDC |
A2 | +12V | +12 VDC | B2 | TCK | Test Clock |
A3 | TMS | Test Mode Select | B3 | GND | Ground |
A4 | TDI | Test Data Input | B4 | TDO | Test Data Output |
A5 | +5V | +5 VDC | B5 | +5V | +5 VDC |
A6 | INTA | Interrupt A | B6 | +5V | +5 VDC |
A7 | INTC | Interrupt C | B7 | INTB | Interrupt B |
A8 | +5V | +5 VDC | B8 | INTD | Interrupt D |
A9 | — | Reserved | B9 | PRSNT1 | Present |
A10 | +5V | Power (+5 V or +3.3 V) | B10 | — | Reserved |
A11 | — | Reserved | B11 | PRSNT2 | Present |
A12 | GND03 | Ground or Keyway for 3.3/Universal PWB | B12 | GND | Ground or Keyway for 3.3/Universal PWB |
A13 | GND05 | Ground or Key-way for 3.3/Universal PWB | B13 | GND | Ground or Open (Key) for 3.3/Universal PWB |
A14 | 3.3Vaux | — | B14 | RES | Reserved |
A15 | RESET | Reset | B15 | GND | Ground |
A16 | +5V | Power (+5 V or +3.3 V) | B16 | CLK | Clock |
A17 | GNT | Grant PCI use | B17 | GND | Ground |
A18 | GND08 | Ground | B18 | REQ | Request |
A19 | PME# | Power Management Event | B19 | +5V | Power (+5 V or +3.3 V) |
A20 | AD30 | Address/Data 30 | B20 | AD31 | Address/Data 31 |
A21 | +3.3V01 | +3.3 VDC | B21 | AD29 | Address/Data 29 |
A22 | AD28 | Address/Data 28 | B22 | GND | Ground |
A23 | AD26 | Address/Data 26 | B23 | AD27 | Address/Data 27 |
A24 | GND10 | Ground | B24 | AD25 | Address/Data 25 |
A25 | AD24 | Address/Data 24 | B25 | +3.3V | +3.3VDC |
A26 | IDSEL | Initialization Device Select | B26 | C/BE3 | Command, Byte Enable 3 |
A27 | +3.3V03 | +3.3 VDC | B27 | AD23 | Address/Data 23 |
A28 | AD22 | Address/Data 22 | B28 | GND | Ground |
A29 | AD20 | Address/Data 20 | B29 | AD21 | Address/Data 21 |
A30 | GND12 | Ground | B30 | AD19 | Address/Data 19 |
A31 | AD18 | Address/Data 18 | B31 | +3.3V | +3.3 VDC |
A32 | AD16 | Address/Data 16 | B32 | AD17 | Address/Data 17 |
A33 | +3.3V05 | +3.3 VDC | B33 | C/BE2 | Command, Byte Enable 2 |
A34 | FRAME | Address or Data phase | B34 | GND13 | Ground |
A35 | GND14 | Ground | B35 | IRDY# | Initiator Ready |
A36 | TRDY# | Target Ready | B36 | +3.3V06 | +3.3 VDC |
A37 | GND15 | Ground | B37 | DEVSEL | Device Select |
A38 | STOP | Stop Transfer Cycle | B38 | GND16 | Ground |
A39 | +3.3V07 | +3.3 VDC | B39 | LOCK# | Lock bus |
A40 | SMBCLK | SMB CLK | B40 | PERR# | Parity Error |
A41 | SMBDAT | SMB DATA | B41 | +3.3V08 | +3.3 VDC |
A42 | GND17 | Ground | B42 | SERR# | System Error |
A43 | PAR | Parity | B43 | +3.3V09 | +3.3 VDC |
A44 | AD15 | Address/Data 15 | B44 | C/BE1 | Command, Byte Enable 1 |
A45 | +3.3V10 | +3.3 VDC | B45 | AD14 | Address/Data 14 |
A46 | AD13 | Address/Data 13 | B46 | GND18 | Ground |
A47 | AD11 | Address/Data 11 | B47 | AD12 | Address/Data 12 |
A48 | GND19 | Ground | B48 | AD10 | Address/Data 10 |
A49 | AD9 | Address/Data 9 | B49 | GND20 | Ground |
A50 | Keyway | Open or Ground for 3.3V PWB | B50 | Keyway | Open or Ground for 3.3V PWB |
A51 | Keyway | Open or Ground for 3.3V PWB | B51 | Keyway | Open or Ground for 3.3V PWB |
A52 | C/BE0 | Command, Byte Enable 0 | B52 | AD8 | Address/Data 8 |
A53 | +3.3V11 | +3.3 VDC | B53 | AD7 | Address/Data 7 |
A54 | AD6 | Address/Data 6 | B54 | +3.3V12 | +3.3 VDC |
A55 | AD4 | Address/Data 4 | B55 | AD5 | Address/Data 5 |
A56 | GND21 | Ground | B56 | AD3 | Address/Data 3 |
A57 | AD2 | Address/Data 2 | B57 | GND22 | Ground |
A58 | AD0 | Address/Data 0 | B58 | AD1 | Address/Data 1 |
A59 | +5V | Power (+5 V or +3.3 V) | B59 | VCC08 | Power (+5 V or +3.3 V) |
A60 | REQ64 | Request 64 bit | B60 | ACK64 | Acknowledge 64 bit |
A61 | VCC11 | +5 VDC | B61 | VCC10 | +5 VDC |
A62 | VCC13 | +5 VDC | B62 | VCC12 | +5 VDC |
64 bit spacer KEYWAY | |||||
64 bit spacer KEYWAY | |||||
A63 | GND | Ground | B63 | RES | Reserved |
A64 | C/BE# | Command, Byte Enable 7 | B64 | GND | Ground |
A65 | C/BE# | Command, Byte Enable 5 | B65 | C/BE# | Command, Byte Enable 6 |
A66 | +5V | Power (+5 V or +3.3 V) | B66 | C/BE# | Command, Byte Enable 4 |
A67 | PAR64 | Parity 64 | B67 | GND | Ground |
A68 | AD62 | Address/Data 62 | B68 | AD63 | Address/Data 63 |
A69 | GND | Ground | B69 | AD61 | Address/Data 61 |
A70 | AD60 | Address/Data 60 | B70 | +5V | Power (+5 V or +3.3 V) |
A71 | AD58 | Address/Data 58 | B71 | AD59 | Address/Data 59 |
A72 | GND | Ground | B72 | AD57 | Address/Data 57 |
A73 | AD56 | Address/Data 56 | B73 | GND | Ground |
A74 | AD54 | Address/Data 54 | B74 | AD55 | Address/Data 55 |
A75 | +5V | Power (+5 V or +3.3 V) | B75 | AD53 | Address/Data 53 |
A76 | AD52 | Address/Data 52 | B76 | GND | Ground |
A77 | AD50 | Address/Data 50 | B77 | AD51 | Address/Data 51 |
A78 | GND | Ground | B78 | AD49 | Address/Data 49 |
A79 | AD48 | Address/Data 48 | B79 | +5V | Power (+5 V or +3.3 V) |
A80 | AD46 | Address/Data 46 | B80 | AD47 | Address/Data 47 |
A81 | GND | Ground | B81 | AD45 | Address/Data 45 |
A82 | AD44 | Address/Data 44 | B82 | GND | Ground |
A83 | AD42 | Address/Data 42 | B83 | AD43 | Address/Data 43 |
A84 | +5V | Power (+5 V or +3.3 V) | B84 | AD41 | Address/Data 41 |
A85 | AD40 | Address/Data 40 | B85 | GND | Ground |
A86 | AD38 | Address/Data 38 | B86 | AD39 | Address/Data 39 |
A87 | GND | Ground | B87 | AD37 | Address/Data 37 |
A88 | AD36 | Address/Data 36 | B88 | +5V | Power (+5 V or +3.3 V) |
A89 | AD34 | Address/Data 34 | B89 | AD35 | Address/Data 35 |
A90 | GND | Ground | B90 | AD33 | Address/Data 33 |
A91 | AD32 | Address/Data 32 | B91 | GND | Ground |
A92 | RES | Reserved | B92 | RES | Reserved |
A93 | GND | Ground | B93 | RES | Reserved |
A94 | RES | Reserved | B94 | GND | Ground |