Для чего придумали объектно-ориентированное программирование

Класс

Класс — это такой тип данных, который состоит из единого набора полей и методов.

Имеет внутренние и внешние интерфейсы для управления содержимым. При копировании через присваивание копируется интерфейс, но не данные. Разные виды взаимодействуют между собой посредством:

  • наследования;
  • ассоциации;
  • агрегации.

При наследовании дочерний класс наследует все свойства родителя, ассоциация подразумевает взаимодействие объектов. Когда объект одного класса входит в другой, это называется агрегацией. Но когда они еще зависят друг от друга по времени жизни, — это композиция.

Одной из главных характеристик является область видимости. Понятие по-разному определяется разными ЯП.

В Object Pascal описывается следующим образом:

ClassName = class(SuperClass)

private

{ использование элементов ограничивается только пределами модуля }

{ здесь указываются поля }

strict private

{ спецификатор доступа стал доступным с выходом Delphi 2007, обозначает то же, что и private }

protected

{ элементы могут использоваться внутри ClassName или при наследовании }

public

{ }

published

{ элементы доступны всем, они отображаются в Object Inspector’e }

end;

Здесь SuperClass — предок, от которого происходит наследование.

Для C++ создание выглядит так:

class MyClass: public Parent

{

public:

MyClass(); // конструктор

~MyClass(); // деструктор

protected:

private:

};

В этом примере Parent является предком, если таковой имеется. Спецификаторы private, public, protected обозначают то же самое, что в предыдущем примере на Паскале. Также мы видим конструктор, деструктор, доступные для любой части программы. У C++ все элементы по умолчанию являются private, соответственно, это можно не указывать.

Плюсы и минусы объектно-ориентированных языков программирования

Хотя языки ООП могут быть мощными, они полезны не для каждой ситуации и имеют некоторый багаж, который необходимо учитывать.

Плюсы

1. Возможность повторного использования

Объектно-ориентированный код имеет чрезвычайно модульную структуру. Благодаря полиморфизму и абстракции вы можете создать одну функцию, которую можно будет использовать снова и снова. Вы также можете скопировать информацию и функции, которые уже были написаны с помощью наследования. Это экономит время, снижает сложность, экономит место и упрощает программирование.

2. Параллельная разработка

Существует достаточно наработок для того, чтобы части программы разрабатывались отдельно друг от друга и при этом функционировали по объектно-ориентированным принципам. Это значительно упрощает параллельную разработку для более крупных команд разработчиков.

3. Обслуживание

Поскольку большая часть, если не весь, наш код находится в одном месте, вызывается и используется повторно, этот код намного проще поддерживать. Вместо того, чтобы по отдельности исправлять сотню различных случаев вызова функции, мы можем исправить одну модульную и полиморфную функцию.

4. Безопасность

Хотя большинство языков имеют некоторую безопасность, объектно-ориентированные языки удобны, поскольку безопасность встроена с инкапсуляцией. Другие методы и классы не могут получить доступ к личным данным по умолчанию, и программы, написанные на языках ООП, более безопасны для этого.

5. Модульность

В объектно-ориентированных языках программирования приложение разбивается на объекты и классы. Это полезно, потому что даёт вашему приложению более модульную структуру. Модульный код легче читать. Поэтому его легче обслуживать.

Минусы

1. Часто грязный

Поскольку объектно-ориентированные языки настолько настраиваемы и масштабируемы, можно легко потерять понимание того, как работает код. Код ООП может работать разными способами. Существует множество методологий программирования в ООП, которые не работают с другими методологиями, неэффективны или сложны в использовании.

2. Требуется больше планирования

Поскольку эти языки настолько модульны и масштабируемы, отказ от чёткой конструкции заранее — это рецепт катастрофы. Создание эффективной программы требует твёрдого плана в большей степени, чем при использовании других парадигм программирования.

3. Непрозрачность

Это как плюс, так и минус. Объекты и функции могут работать независимо. Они могут получать информацию и (обычно) возвращать надёжные результаты. В результате они могут оказаться чёрными ящиками, а это означает, что то, что они делают, не всегда очевидно. Хотя программист, вероятно, создал этот объект и знает, что он делает, языки ООП просто не так прозрачны, как другие языки.

4. Производительность

Объектно-ориентированные языки часто страдают от снижения производительности. Программы, написанные на языках ООП, часто больше и требуют больше вычислительных усилий для запуска, чем функциональные языки

Однако это не всегда так или важно. C ++ — язык ООП, но это один из самых быстрых доступных языков

В то же время скорость не всегда важна. Разница в скорости становится очевидной только при обработке огромных или сложных вычислений, или в случаях, когда требуется экстремальная скорость.

История развития

Основа ООП была заложена в начале 1960-х годов. Прорыв в использовании экземпляров и объектов был достигнут в MIT с PDP-1, и первым языком программирования для работы с объектами стал Simula 67. Он был разработан Кристен Найгаард и Оле-Джохан Даль в Норвегии с целью создания симуляторов. Они работали над симуляциями взрыва кораблей и поняли, что могут сгруппировать корабли в различные категории. Каждому типу судна было решено присвоить свой собственный класс, который должен содержать в себе набор уникальных характеристик и данных. Таким образом, Simula не только ввела понятие класса, но и представила рабочую модель.

Термин «объектно-ориентированное программирование» был впервые использован Xerox PARC в языке программирования Smalltalk. Понятие ООП использовалось для обозначения процесса использования объектов в качестве основы для расчетов. Команда разработчиков была вдохновлена проектом Simula 67, но они спроектировали свой язык так, чтобы он был динамичным. В Smalltalk объекты могут быть изменены, созданы или удалены, что отличает его от статических систем, которые обычно используются. Этот язык программирования также был первым, использовавшим концепцию наследования. Именно эта особенность позволила Smalltalk превзойти как Simula 67, так и аналоговые системы программирования.

Онлайн тесты

  • Тест на знание основ HTML
  • Тест на знание основ PHP
  • Тест на знание ООП в PHP

Все тесты

Simula 67 стала новаторской системой, которая впоследствии стала основой для создания большого количества других языков программирования, в том числе Pascal и Lisp. В 1980-х годах объектно-ориентированное программирование приобрело огромную популярность, и основным фактором в этом стало появление языка С++

Концепция ООП также имела важное значение для разработки графических пользовательских интерфейсов. В качестве одного из самых ярких примеров можно привести структуру Cocoa, существующую в Mac OS X

Общие принципы модели стали применяться во многих современных языках программирования. Некоторые из них — Fortran, BASIC, Pascal. На тот момент многие программы не были разработаны с учетом ООП, что было причиной возникновения некоторых проблем совместимости. “Чистые” объектно-ориентированные языки программирования не обладали многими функциями, необходимыми программистам. Для решения этих проблем ряд исследователей предложили несколько новых языков программирования, созданных на основе принципов ООП с сохранением других, необходимых программистам, функций. Среди наиболее ярких примеров можно выделить Eiffel, Java, .NET. Даже в серьезных веб-разработках используются языки программирования, основанные на принципах ООП — PHP (у нас вы можете пройти курс ООП в PHP), Python, Ruby. По мнению экспертов, в ближайшие несколько десятилетий именно объектно-ориентированный подход будет оставаться основной парадигмой в развитии программирования.

Что такое «абстракция»?

Абстрагирование – это способ выделить набор общих характеристик объекта, исключая из рассмотрения частные и незначимые. Соответственно, абстракция – это набор всех таких характеристик.

Пример:

// Abstract class
abstract class Animal {
    // Abstract method (does not have a body)
    public abstract void animalSound();

    // Regular method
    public void sleep() {
        System.out.println("Zzz");
    }
}

// Subclass (inherit from Animal)
class Pig extends Animal {
    public void animalSound() {
        // The body of animalSound() is provided here
        System.out.println("The pig says: wee wee");
    }
}

class MyMainClass {
    public static void main(String[] args) {
        Pig myPig = new Pig(); // Create a Pig object
        myPig.animalSound();
        myPig.sleep();
    }
}

Способы и направления поддержки детской инициативы

1-е направление. Деятельностные инициативы. 

Способы поддержки:

 Способы поддержки деятельностных инициатив.

 •Способы поддержки игровой инициативы. 

Пример. Игровые инициативы. 

подготовка необходимых атрибутов, способствующих развертыванию игровых сюжетов; 

обогащение представлений детей об особенностях деятельности людей определенных профессий, о трудностях и опасностях, о достижениях в профессиональной деятельности; 

создание проблемно-игровых ситуаций, стимулирующих продолжение игры; 

… 

•Способы поддержки познавательных инициатив.

 — Проектная деятельность. 

Способы поддержки коммуникативной инициативы. 

•Способы поддержки художественно-творческих инициатив.

 — Проектная деятельность. 

•2-е направление. Социальные инициативы. 

Способы поддержки.

 •Ситуации заботы (о малышах, о старших…) 

•Ситуации правило творчества («Мы – дружные ребята» и др.) 

Что такое ООП

Возникло как результат развития процедурного программирования. Основой объектно-ориентированных языков являются такие принципы, как:

  • инкапсуляция;
  • наследование;
  • полиморфизм.

Некоторые принципы, которые были изначально заложены в первые ООЯ, подверглись существенному изменению.

Примеры объектно-ориентированных языков:

  1. Pascal. С выходом Delphi 7 на официальном уровне стал называться Delphi. Основная область использования Object Pascal — написание прикладного ПО.
  2. C++ широко используется для разработки программного обеспечения, является одним из самых популярных языков. Применяется для создания ОС, прикладных программ, драйверов устройств, приложений, серверов, игр.
  3. Java — транслируется в байт-код, обрабатывается виртуальной машиной Java. Преимуществом такого способа выполнения является независимость от операционной системой и оборудования. Существующие семейства: Standard Edition, Enterprise Edition, Micro Edition, Card.
  4. JavaScript применяется в качестве языка сценариев для web-страниц. Синтаксис во многом напоминает Си и Java. Является реализацией Ecmascript. Сам Ecmascript используется в качестве основы для построения других скриптовых языков, таких как JScript, ActionScript.
  5. Objective-C построен на основе языка Си, а сам код Си понятен компилятору Objective-C.
  6. Perl — высокоуровневый интерпретируемый динамический язык общего назначения. Имеет богатые возможности для работы с текстом, изначально разработан именно для манипуляций с текстом. Сейчас используется в системном администрировании, разработке, сетевом программировании, биоинформатике и т. д.
  7. PHP. Аббревиатура переводится как препроцессор гипертекста. Применяется для разработки веб-приложений, в частности серверной части. С его помощью можно создавать gui-приложения с помощью пакетов PHP-GTK, PHP-Qt, WinBinder.
  8. Python — язык общего назначения, ориентирован на повышение производительности разработчика и читаемость кода. Был разработан проект Cython, с помощью которого осуществляется трансляция программ, написанных на Python в код на языке Си.

Инкапсуляция

Инкапсуляция ограничивает доступ компонентов к другим, связывает данные с методами для обработки. Для инкапсуляции используется спецификатор доступа private.

Обычно понятия инкапсуляция и сокрытие отождествляются, но некоторые языки различают эти понятия. Другими словами, критичные для работы свойства защищаются, а их изменение становится невозможным.

class Animal {

private $name;

function __construct($name) {

$this->name = $name;

}

function getName() {

return $this->name;

}

}

Name принимается в качестве аргументов конструктора. Когда конструктор будет использован в других частях кода, ничто не сможет изменить элемент name. Как видим, он указывается внутри, для других частей кода он недоступен.

Методы

Методом класса называют функцию или процедуру, которая принадлежит классу или объекту. Отличие функции от процедуры в том, что функция возвращает значение, а процедура нет. В общем виде синтаксис объявления метода выглядит следующим образом:

модификатор(ы) тип_возвращаемого_значения имя_функции(аргументы)

Модификаторы определяют область видимости, принадлежность метода объекту или классу, является ли метод переопределением и т.п. Тип возвращаемого значения – это любой доступный в C# тип. В качестве типа возвращаемого значения не может использоваться ключевое слово var. Если метод не возвращает ничего, то указывается тип void. Метод может содержать ноль или более аргументов, которые также могут иметь специальные модификаторы, указывающие на то является ли аргумент входным или выходным и т.п. Более подробно про все эти аспекты будет рассказано в одном из уроков, посвященных более глубокому изучению ООП в C#. В рамках данного урока, наша задача – это на интуитивном уровне научиться принципам работы с классами в C#.

Работа с модификатором доступа

Если метод объявлен с модификатором public, то его можно использовать вне класса, например метод Printer из DemoClass

public void Printer()
{
    Console.WriteLine($"field: {field}, Property: {Property}");
}

Такой метод может вызываться в любом месте программы у соответствующих объектов:

var d6 = new DemoClass(11) { Property = 12 };
d6.Printer(); // field: 11, Property: 12

Если мы объявим метод с модификатором private или без модификатора (тогда, по умолчанию, будет принят private), то его уже нельзя будет вызвать снаружи класса:

class DemoClass 
{ 
    // ... 
    private void PrivateMethod() 
    { 
        Console.WriteLine($"Secret method"); 
    } 
    // ... 
}

(Код в методе Main):

var d7 = new DemoClass();
d7.PrivateMethod(); // Ошибка компиляции!!!

Но при этом внутри класса его вызвать можно:

class DemoClass
{
    // ... 
    public void PublicMethod() 
    { 
        Console.WriteLine($"Public method");     
        PrivateMethod(); 
    } 
    // ... 
}

Статические методы и методы объекта

Различают статические методы и методы объекта. Статические имеют модификатор static перед именем метода и принадлежат классу. Для вызова таких методов не обязательно создавать экземпляры класса, мы уже пользовались такими методами из класса Console – это методы Write и WriteLine. Для вызова метода объекта, необходимо предварительно создать экземпляр класса, пример – это метод PublicMethod и Priter у класса DemoClass. Добавим статический метод и метод класса в DemoClass

class DemoClass
{
    // ...
    public static void StaticMethod()
    {
        Console.WriteLine("Message from static method");
    }
    public void NoneStaticMethod()
    {
        Console.WriteLine("Message from non static method");
    }
    // ...
}

Вызовем эти методы из класса DemoClass в методе Main

DemoClass.StaticMethod(); // Message from static method
var d8 = new DemoClass();
d8.NoneStaticMethod(); // Message from none static method

Методы принимающие аргументы и возвращающие значения

Как было сказано в начале данного раздела, методы могут принимать данные через аргументы и возвращать значения, продемонстрируем эту возможность на примере:

class DemoClass 
{ 
    // ... 
    public int MulField(int value) 
    { 
        return field * value; 
    } 
    // ... 
}

(Код в Main):

var d8 = new DemoClass(10);
Console.WriteLine($"MulField() result: {d8.MulField(2)}"); // MulField() result: 20

Наследование[]

Наследование — один из четырёх важнейших механизмов объектно-ориентированного программирования (наряду с инкапсуляцией, полиморфизмом и абстракцией), позволяющий описать новый класс на основе уже существующего (родительского), при этом свойства и функциональность родительского класса заимствуются новым классом.

Другими словами, класс-наследник реализует спецификацию уже существующего класса (базовый класс). Это позволяет обращаться с объектами класса-наследника точно так же, как с объектами базового класса.

Простое наследование:

Класс, от которого произошло наследование, называется базовым или родительским (англ. base class). Классы, которые произошли от базового, называются потомками, наследниками или производными классами (англ. derived class).

В некоторых языках используются абстрактные классы. Абстрактный класс — это класс, содержащий хотя бы один абстрактный метод, он описан в программе, имеет поля, методы и не может использоваться для непосредственного создания объекта. То есть от абстрактного класса можно только наследовать. Объекты создаются только на основе производных классов, наследованных от абстрактного. Например, абстрактным классом может быть базовый класс «сотрудник вуза», от которого наследуются классы «аспирант», «профессор» и т. д. Так как производные классы имеют общие поля и функции (например, поле «год рождения»), то эти члены класса могут быть описаны в базовом классе. В программе создаются объекты на основе классов «аспирант», «профессор», но нет смысла создавать объект на основе класса «сотрудник вуза».

Множественное наследование

При множественном наследовании у класса может быть более одного предка. В этом случае класс наследует методы всех предков. Достоинства такого подхода в большей гибкости. Множественное наследование реализовано в C++. Из других языков, предоставляющих эту возможность, можно отметить Python и Эйфель. Множественное наследование поддерживается в языке UML.

Множественное наследование — потенциальный источник ошибок, которые могут возникнуть из-за наличия одинаковых имен методов в предках. В языках, которые позиционируются как наследники C++ (Java, C# и др.), от множественного наследования было решено отказаться в пользу интерфейсов. Практически всегда можно обойтись без использования данного механизма. Однако, если такая необходимость все-таки возникла, то, для разрешения конфликтов использования наследованных методов с одинаковыми именами, возможно, например, применить операцию расширения видимости — «::» — для вызова конкретного метода конкретного родителя.

Попытка решения проблемы наличия одинаковых имен методов в предках была предпринята в языке Эйфель, в котором при описании нового класса необходимо явно указывать импортируемые члены каждого из наследуемых классов и их именование в дочернем классе.

Большинство современных объектно-ориентированных языков программирования (C#, Java, Delphi и др.) поддерживают возможность одновременно наследоваться от класса-предка и реализовать методы нескольких интерфейсов одним и тем же классом. Этот механизм позволяет во многом заменить множественное наследование — методы интерфейсов необходимо переопределять явно, что исключает ошибки при наследовании функциональности одинаковых методов различных классов-предков.

Ключевые принципы ООП

Объектно-ориентированное программирование исповедует ряд принципов, лежащих в основе правил создания и использования всех структурных элементов, включая классы, объекты, методы и прочие компоненты.

Инкапсуляция

Этот принцип гласит, что вся важная информация, необходимая для работы объекта, в нем же и хранится. И только определенные данные доступны для внешних функций и объектов. 

Данные конкретного объекта или класса хранятся в пределах этого объекта или класса. Вносить в них изменения, используя другие классы, нельзя. У окружения есть право только запрашивать «публичные» методы и атрибуты. 

Такой подход обеспечивает повышенный уровень безопасности, а также сокращает шансы на случайное повреждение данных внутри какого-то класса или объекта со стороны. 

Наследование

Это как раз основная суть взаимоотношений между классами и объектами, описанная выше. Чтобы не создавать кучу одинаковых объектов или классов, можно создать класс над классами с более общими характеристики и функциями, а потом постепенно наследовать от него те или иные возможности. Используя специальную конструкцию, программист может забрать из класса ряд атрибутов или методов, оставить их в прежнем виде и дополнить новыми или же слегка переосмыслить на свое усмотрение, а потом создать из них уникальный объект или подкласс для дальнейшего наследования опций. 

Это проще понять на примере со средствами передвижения:

  • Берем абстрактный класс «Средство передвижения» с возможностью набирать скорость и перевозить людей.

  • Из него формируем подкласс «Автобус», наследующий базовые характеристики и уточняющий их определенным количеством мест для людей и пределом скорости. 

  • Затем создаем объект «Икарус» с более конкретной скоростью, планировкой, количеством дверей, типом сигнала и другими специфичными параметрами. 

Не нужно каждый раз создавать новый класс или объект с полным набором опций. Достаточно воспользоваться конструкцией в духе  и дополнить код конкретикой. 

Абстракция 

Каждый верхний слой над объектом (классы) более абстрактный, чем его «младшая версия». Это позволяет не переписывать по 10 раз один и тот же объект, указывая одни и те же атрибуты и методы. Напротив, абстрактные классы позволяют создавать все более конкретные классы и вытекающие из них объекты, не описывая реализацию функций заранее (в этом и суть абстракции), а оставляя исключительно базовый шаблон для дальнейших надстроек. 

Полиморфизм

Один из ключевых принципов ООП, позволяющий использовать одни и те же методы для обработки различных типов данных. Полиморфизм в разных языках программирования отличается: есть строго типизированные языки в духе C++, где задействуется «перегрузка», а есть такие языки, как JavaScript, где по умолчанию функции могут обрабатывать разные типы информации без необходимости указывать тип заранее. 

Полиморфизм позволяет с помощью идентичных методов обрабатывать разные типы данных, например двузначные числа и числа с плавающей точкой. Также полиморфизмом считается возможность переопределять методы в дочерних классах для обработки других видов данных или выполнения дополнительных действий при вызове аналогичного метода. 

Что такое «полиморфизм»?

Полиморфизм – это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Полиморфная переменная, это переменная, которая может принимать значения разных типов, а полиморфная функция, это функция, у которой хотя бы один аргумент является полиморфной переменной.
Выделяют два вида полиморфных функций:

  • ad hoc, функция ведет себя по разному для разных типов аргументов (например, функция — рисует по разному фигуры разных типов);
  • параметрический, функция ведет себя одинаково для аргументов разных типов (например, функция — одинаково кладет в контейнер элементы разных типов).

Принцип в ООП, когда программа может использовать объекты с одинаковым интерфейсом без информации о внутреннем устройстве объекта, называется полиморфизмом.

Пример:

Давайте представим, что нам в программе нужно описать пользователя, который может пользоваться любыми моделями телефона, чтобы позвонить другому пользователю. Вот как можно это сделать:

public class User {
    private String name;

    public User(String name) {
        this.name = name;
    }

    public void callAnotherUser(int number, AbstractPhone phone) {
// вот он полиморфизм - использование в коде абстактного типа AbstractPhone phone!
        phone.call(number);
    }
}

Теперь опишем различные модели телефонов. Одна из первых моделей телефонов:

public class ThomasEdisonPhone extends AbstractPhone {

    public ThomasEdisonPhone(int year) {
        super(year);
    }

    @Override
    public void call(int outputNumber) {
        System.out.println("Вращайте ручку");
        System.out.println("Сообщите номер абонента, сэр");
    }

    @Override
    public void ring(int inputNumber) {
        System.out.println("Телефон звонит");
    }
}

Обычный стационарный телефон:

public class Phone extends AbstractPhone {

    public Phone(int year) {
        super(year);
    }

    @Override
    public void call(int outputNumber) {
        System.out.println("Вызываю номер" + outputNumber);
    }

    @Override
    public void ring(int inputNumber) {
        System.out.println("Телефон звонит");
    }
}

И, наконец, крутой видеотелефон:

public class VideoPhone extends AbstractPhone {

    public VideoPhone(int year) {
        super(year);
    }

    @Override
    public void call(int outputNumber) {
        System.out.println("Подключаю видеоканал для абонента " + outputNumber);
    }

    @Override
    public void ring(int inputNumber) {
        System.out.println("У вас входящий видеовызов..." + inputNumber);
    }
}

Создадим объекты в методе main() и протестируем метод callAnotherUser:

AbstractPhone firstPhone = new ThomasEdisonPhone(1879);
AbstractPhone phone = new Phone(1984);
AbstractPhone videoPhone=new VideoPhone(2018);
User user = new User("Андрей");
user.callAnotherUser(224466,firstPhone);
// Вращайте ручку
//Сообщите номер абонента, сэр
user.callAnotherUser(224466,phone);
//Вызываю номер 224466
user.callAnotherUser(224466,videoPhone);
//Подключаю видеоканал для абонента 224466

Используя вызов одного и того же метода объекта user, мы получили различные результаты. Выбор конкретной реализации метода call внутри метода callAnotherUser производился динамически на основании конкретного типа вызывающего его объекта в процессе выполнения программы. В этом и заключается основное преимущество полиморфизма – выбор реализации в процессе выполнения программы.

В примерах классов телефонов, приведенных выше, мы использовали переопределение методов – прием, при котором изменяется реализация метода, определенная в базовом классе, без изменения сигнатуры метода. По сути, это является заменой метода, и именно новый метод, определенный в подклассе, вызывается при выполнении программы.

Обычно, при переопределении метода, используется аннотация @Override, которая подсказывает компилятору о необходимости проверить сигнатуры переопределяемого и переопределяющего методов.

Ключевое слово this

Ключевое слово this используется внутри класса для ссылки на текущий экземпляр класса. Чаще всего его приходится использовать в методах для доступа к полям класса. Например, если у класса Building, с которым мы работали в предыдущем разделе, есть поле height, метод SetHeight был создан нами для того, чтобы присваивать этому полю значение, аргумент этого метода – переменная с именем height

float SetHeight(float height)

В теле данного метода мы должны как-то явно задать, что значение этого аргумента будет присвоено приватному полю height, записать height = height мы не можем, так как в этом случае нет четкого понимания, что чему будет присваиваться. В этом случае, для явного указания, что мы хотим присвоить значение полю класса, следует использовать ключевое слово this так, как мы это реализовали в методе SetHeight

public float SetHeight(float height) => this.height = height;

История ООП

ООП – парадигма программирования, в которой основными концепциями являются понятия объектов и классов. В центре ООП находится понятие объекта. Объект — это сущность, которой можно посылать сообщения, и которая может на них реагировать, используя свои данные. Объект — это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией. Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности — для этого требуется наличие наследования. Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм; то есть возможность объектов с одинаковой спецификацией иметь различную реализацию. Первым языком программирования, в котором были предложены принципы объектной ориентированности, была Симула. В момент своего появления (в 1967 году), этот язык программирования предложил поистине революционные идеи: объекты, классы, виртуальные методы и др., однако это всё не было воспринято современниками как нечто грандиозное. Тем не менее, большинство концепций были развиты Аланом Кэйем и Дэном Ингаллсом в языке Smalltalk. Именно он стал первым широко распространённым объектно-ориентированным языком программирования. (C#, C++, Java, Ruby, PHP, Perl, Python). ООП дает возможность создавать расширяемые системы (extensible systems). Это одно из самых значительных достоинств ООП и именно оно отличает данный подход от традиционных методов программирования. Расширяемость (extensibility) означает, что существующую систему можно заставить работать с новыми компонентами, причем без внесения в нее каких-либо изменений. Компоненты могут быть добавлены на этапе выполнения. Smalltalk — объектно-ориентированный язык программирования с динамической типизацией, разработанный в Xerox PARC Аланом Кэйем, Дэном Ингаллсом, Тедом Кэглером, Адель Голдберг, и другими в 1970-х годах. Язык был представлен как Smalltalk-80. Smalltalk оказал большое влияние на развитие многих других языков, таких как: Objective-C, Actor, Java, Groovy и Ruby. Многие идеи 1980-х и 1990-х по написанию программ появились в сообществе Smalltalk. К ним можно отнести рефакторинг, шаблоны проектирования (применительно к ПО), карты «класс — обязанности — взаимодействие» и экстремальное программирование в целом. Си — язык программирования, разработанный в 1969—1973 годах сотрудниками Bell Labs Кеном Томпсоном и Деннисом Ритчи как развитие языка Би. Благодаря близости по скорости выполнения программ, написанных на Си, к языку ассемблера, этот язык получил широкое применение при создании системного программного обеспечения и прикладное программное обеспечение для решения широко круга задач. Язык программирования Си оказал существенное влияние на развитие индустрии программного обеспечения, а его синтаксис стал основой для таких языков программирования как C++, C# и Java.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector